

ASC 5511LN | ASC 5515LN

MEMS Capacitive Accelerometer

- Triaxial
- MEMS Capacitive
- Measurement Range: ±2 to ±400 g
- Noise Density: 7 to 400 µg /√Hz
- Frequency Range (±5 %): DC to 2000 Hz
- Aluminum or Stainless-Steel Housing
- Made in Germany

MEMS CAPACITIVE ACCELEROMETER

The key components in capacitive accelerometers are highquality micro-electro-mechanical systems (MEMS) that feature excellent long-term stability and reliability. This technology enables the measurement of static (DC) and constant accelerations, which can be used to calculate the velocity and displacement of moving objects. Depending on the design of the spring-mass-damping system, however, it is also possible to detect dynamic (AC) accelerations with amplitudes up to ±400 g and within a frequency response range of up to 2 kHz (±5 %) or 4.2 kHz (±3 dB). Other advantages of capacitive accelerometers are their outstanding temperature stability, excellent response behavior and achievable resolution.

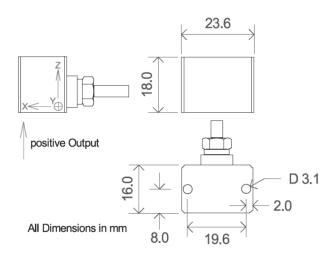
DESCRIPTION

The accelerometers of type ASC 5511LN and ASC 5515LN are based on proven MEMS technology and capacitive operating principle. The integrated electronic circuitry enables a differential analog voltage output (±4 V FSO) and flexible power supply voltage from 6 to 40 VDC. The LN (Low Noise) accelerometers from ASC provide an outstanding noise performance from 7 to 400 μg/√Hz which is essential for demanding measurements of smallest frequencies and amplitudes.

The sensor ASC 5511LN features a lightweight aluminum housing and the sensor ASC 5515LN provides a robust stainless-steel housing, both with protection class IP67 and an integrated cable with configurable length and connectors.

The triaxial accelerometers enable the detection of smallest acceleration amplitudes in three degrees of freedom, for example for measuring aerodynamic and mass-related imbalances in wind turbines or for evaluation ride comfort in passenger ships.

FEATURES


- Very Low Noise Differential Voltage Output
- DC Response, Gas damped
- High Shock Resistance
- Excellent Offset and Scale Factor Stability

OPTIONS

- Customized Cable Length
- **Customized Connector**
- TEDS Module

APPLICATIONS

- NVH and Operational Stability
- Driving and Ride Comfort Tests
- Vehicle and Running Dynamics

TYPICAL SPECIFICATIONS

D١		

Measurement Range	g	±2	±5	±10	±25	±50	±100	±200	±400
Scale Factor (sensitivity)	mV/g	2000	800	400	160	80	40	20	10
Noise Density	µg/√Hz	7	12	18	25	50	100	200	400
Specified Frequency Response Range (±5 %)	Hz	0 to 250	0 to 400	0 to 700	0 to 1300	0 to 1600	0 to 1700	0 to 1900	0 to 2000
Frequency Response Range (±3 dB)	Hz	0 to 525	0 to 800	0 to 1100	0 to 1750	0 to 2100	0 to 3000	0 to 3600	0 to 4200
Amplitude Non -Linearity	% FS0	<0.15 (typ) <0.5 (max)							
Transverse Sensitivity	%	<2 (typ) <3 (max)							

Electrical

Power Supply Voltage	٧	V 6 to 40							
Operating Current Consumption	mA				<	20			
Offset (bias)	m V	±80	±80	±40	±40	±40	±40	±40	±40
Broadband Noise (over specified frequency range ±5 %)	μV	225	195	190	145	160	165	175	180
Output Impedance	Ω	90							
Isolation		Case isolated							

Environmental

Temperature Coefficient of the Scale Factor (max)	ppm/K				±2	00			
Temperature Coefficient of the Offset (max)	mg/K	±0.8	±2	±4	±10	±20	±40	±80	±16 0
Operating Temperature Range	°C				-20 to	+100			
Storage Temperature Range	°C				-20 to	+100			
Shock Limit (max peak)	9	2000	2000	5000	5000	5000	5000	5000	5000
Protection Class					IP	67			

Physical

Sensing Element		MEMS Capacitive
Case Material		ASC 5 511LN: Anodized Aluminum ASC 5 515LN: Stainless -Steel
Connector at Cable End		Optional
Mounting		Adhesive Screw Holes
Weight (without cable)	gram	ASC 5 511LN: 2 2 ASC 5 515LN: 4 2
Cable		19 gram per meter AWG 30 Polyurethane (PUR) Diameter 4.5 mm

SENSOR CALIBRATION

Factory Calibration (supplied with the sensor)

Part Number									
Measurement Range (sensor)	g	±2	±5	±10	±25	±50	±100	±200	±400
Applied Frequency (min)	Hz	1	10	10	10	10	10	10	10
Applied Frequency (max)	Hz	10 0	400	700	1300	1600	1700	1900	2000
Input Amplitude	m/s²	5	5	50	100	200	200	200	200
Reference Frequency for Determination of Scale Factor	Hz	16	80	80	80	80	80	80	80

Calibration according DIN ISO 17025 (order separately)

Part Number									
Measurement Range (sensor)	g	±2	±5	±10	±25	±50	±100	±200	±400
Applied Frequency (min)	Hz	0.5	10	10	10	10	10	10	10
Applied Frequency (max)	Hz	150	800	1100	1750	2100	3000	3600	4200
Input Amplitude	m/s²	5	5	50	100	200	200	200	200
Reference Frequency for Determination of Scale Factor	Hz	16	80	80	80	80	80	80	80

Remarks:

- The conversion factor 1 g corresponds to 9.80665 m/s².
- If any other calibration procedure is required, don't hesitate to contact us. Our services include both factory calibration and calibration in accordance with DAkkS guidelines.
- Furthermore, s ensors have to be calibrated regularly to ensure accurate and precise results. On request we will be glad to remind you of the next scheduled calibration of your sensors.

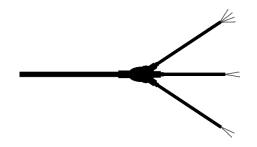
Cable Code / Pin Configuration (12 Wire System) including separate Power Supply for all Axes

	Pin	Color Code		Description
1	Supply +	Red/Violet	X - Axis:	power supply voltage +6 to +40 VDC
2	Supply -	Black/Violet	X - Axis:	power GND
3	Signal +	Green/Violet	X - Axis:	positive, analog output voltage signal for differential mode
4	Signal -	White/Violet	X - Axis:	negative, analog output voltage signal for differential mode
5	Supply +	Red/Grey	Y - Axis	power supply voltage + 6 to +40 VDC
6	Supply -	Black/Grey	Y - Axis	power GND
7	Signal +	Green/Grey	Y - Axis:	positive, analog output voltage signal for differential mode
8	Signal -	White/Grey	Y - Axis:	negative, analog output voltage signal for differential mode
9	Supply +	Red	Z-Axis:	power supply voltage + 6 to +40 VDC
10	Supply -	Black	Z-Axis:	power GND
11	Signal +	Green	Z-Axis:	positive, analog output voltage signal for differential mode
12	Signal -	White	Z-Axis:	negative, analog output voltage signal for differential mode

CABLE CODE / PIN CONFIGURATION (8 WIRE SYSTEM) INCLUDING COMMON POWER SUPPLY FOR ALL AXES

	Pin	Color Code		Description
1	Supply +	Red	Power:	supply voltage +6 to +40 VDC
2	Supply -	Black	Power:	GND
3	Signal +	Green/Violet	X-Axis:	positive, analog output voltage signal for differential mode
4	Signal -	White/Violet	X-Axis:	negative, analog output voltage signal for differential mode
5	Signal +	Green/Grey	Y-Axis:	positive, analog output voltage signal for differential mode
6	Signal -	White/Grey	Y-Axis:	negative, analog output voltage signal for differential mode
7	Signal +	Green	Z-Axis:	positive, analog output voltage signal for differential mode
8	Signal -	White	Z-Axis:	negative, analog output voltage signal for differential mode

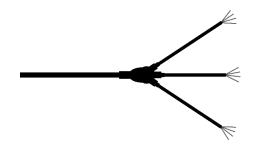
CABLE CONFIGURATION


8 Wire System - 8L

Common power supply for all axes, no cable switch

8 Wire System - 8L3

Common power supply for all axes, including cable switch


12 Wire System - 12L

Separate power supply for all axes, no cable switch

12 Wire System - 12 L3

Separate power supply for all axes, including cable switch

ORDERING INFORMATION

Ordering information are based on standard configurations. The integrated cable features a length of 6 meters and has no connector at the cable end which is identified by "A" in the product match code. However different lengths and the assembling of almost all connector types is possible on request.

Series	Mode I	- Range [g] -	· Cable Length [m]	Connector & Pinout	- Cable Configuration
ASC 55	11LN (Aluminum)	002	6	А	8L
	15LN (Stainless <i>-</i> Steel)	005			8L3
		010			12L
		025			12L3
		050			
		100			
		200			
		400			

Example:

ASC 5511 LN-002-6A-8L

Remark: All customized versions regarding cable length, connector and/or pinout will lead to a corresponding product match code.

SAFETY PRECAUTION FOR INSTALLING AND OPERATING

This data sheet is a part of the product. Read the data sheet carefully before using the product and keep it available for future operation. Handling, electrical connections, mounting or any other work performed at the sensor must be carried out by authorized experts only. Appropriate safety precautions must be taken to exclude any risk of personal injury and damage to operating equipment as a result of a sensor malfunction.

Handling

The sensor is packaged in a reliable housing to protect the sensing elements and integrated electronic components from the ambient environment. However, poor handling of the product can lead to damages that may not be visible and cause electrical failure or reliability issues. Handle the component with caution:

- Avoid shocks and impacts on the housing, such as dropping the sensor on hard surface
- Never move the sensor by pulling the cable
- Make sure that the sensor is used within the specified environmental conditions
- Transport and store the sensor in its original or similar packaging
- The sensor should be mounted on a stable flat surface with all screws tightened or other mounting options
- Avoid any deformation during mounting the sensor
- Mounting tolerances may have an influence on the measured result

Electrical

ASC's inertial sensors are working with many established data acquisition systems. However, make sure that a proper DAQ is used, for the corresponding operation principle of the sensor. Furthermore, suitable precautions shall be employed during all phases of shipment, handling and operating:

- Active sensor pins are susceptible to damage due to electrostatic discharge (ESD)
- Make sure that the sensor is used within the specified electrical conditions
- Check all electrical connections prior to initial setup of the sensor
- Completely shield the sensor and connecting cable
- Do not perform any electrical modifications at the sensor
- Do not perform any adaptions on the wiring or connectors while the device under power
- Never plug or unplug the electrical connection while the sensor is under power
- When a certain pin is not used during operation, make sure that the pin is insulated

Quality

- We have a quality management system according to ISO 9001:2015.
- The Deutsche Akkreditierungsstelle GmbH (DAkkS) has awarded to our calibration laboratory the DIN EN ISO/IEC 17025:2018 accreditation for calibrations and has confirmed our competence to perform calibrations in the field of mec hanical acceleration measurements. The pictured DAkkS -ILAC logo refers exclusively to the accredited service.
- All ASC products are **(€** compliant.

Page 5/5